

1

$2^{\text {nd }}-$ order initial-value problems

- You have seen $2^{\text {nd }}-$ order initial-value problems (IVPs) written in the form:

$$
\begin{aligned}
a_{2}(t) y^{(2)}(t)+a_{1}(t) y^{(1)}(t)+a_{0}(t) y(t) & =g(t) \\
y\left(t_{0}\right) & =y_{0} \\
y^{(1)}\left(t_{0}\right) & =y_{0}^{(1)}
\end{aligned}
$$

- Based on the implicit function theorem,
we can always write a higher-order IVP as

$$
\begin{aligned}
y^{(n)}(t) & =f\left(t, y(t), y^{(1)}(t), \ldots, y^{(n-1)}(t)\right) \\
y\left(t_{0}\right) & =y_{0} \\
y^{(1)}\left(t_{0}\right) & =y_{0}^{(1)} \\
& \vdots \\
y^{(n-1)}\left(t_{0}\right) & =y_{0}^{(n-1)}
\end{aligned}
$$

3

Approximating solutions to higher-order initial value problems

$2^{\text {nd }}-$ order initial-value problems

- Consequently, a second-order IVP can be written as

$$
\begin{aligned}
y^{(2)}(t) & =f\left(t, y(t), y^{(1)}(t)\right) \\
y\left(t_{0}\right) & =y_{0} \\
y^{(1)}\left(t_{0}\right) & =y_{0}^{(1)}
\end{aligned}
$$

- Now, we don't know $y(t)$, nor do we know $y^{(1)}(t)$
- Thus, suppose we define

$$
w_{0}(t)=y(t)
$$

$$
w_{1}(t)=y^{(1)}(t)
$$

- Note therefore that

$$
\begin{array}{rlrl}
w_{0}^{(1)}(t)=y^{(1)}(t) & =w_{1}(t) & w_{0}\left(t_{0}\right)=y\left(t_{0}\right)=y_{0} \\
w_{1}^{(1)}(t)=y^{(2)}(t) & =f\left(t, y(t), y^{(1)}(t)\right) & & w_{1}\left(t_{0}\right)=y^{(1)}\left(t_{0}\right)=y_{0}^{(1)} \\
& =f\left(t, w_{0}(t), w_{1}(t)\right) & &
\end{array}
$$

$2^{\text {nd }}$-order initial-value problems

- Consequently, a second-order IVP can be written as a system of two $1^{\text {st }}$-order IVPS

$$
\begin{aligned}
y^{(2)}(t) & =f\left(t, y(t), y^{(1)}(t)\right) & w_{0}^{(1)}(t)=w_{1}(t) & w_{0}\left(t_{0}\right)=y_{0} \\
y\left(t_{0}\right) & =y_{0} & w_{1}^{(1)}(t)=f\left(t, w_{0}(t), w_{1}(t)\right) & w_{1}\left(t_{0}\right)=y_{0}^{(1)} \\
y^{(1)}\left(t_{0}\right) & =y_{0}^{(1)} & &
\end{aligned}
$$

- In the last topic, we saw how we can write this with vectors

$$
\mathbf{w}(t)=\binom{w_{0}(t)}{w_{1}(t)} \mathbf{w}^{(1)}(t)=\binom{w_{1}(t)}{f\left(t, w_{0}(t), w_{1}(t)\right)} \quad \mathbf{w}\left(t_{0}\right)=\binom{y_{0}}{y_{0}^{(1)}}
$$

5

Approximating solutions to higher-order initial value problems

$2^{\text {nd }}-$ order initial-value problems

- For example,

$$
\mathbf{w}(t)=\binom{w_{0}(t)}{w_{1}(t)} \mathbf{w}^{(1)}(t)=\binom{w_{1}(t)}{f\left(t, w_{0}(t), w_{1}(t)\right)} \quad \mathbf{w}\left(t_{0}\right)=\binom{y_{0}}{y_{0}^{(1)}}
$$

- In the last topic, we saw how we can write this with vectors

```
vector F( double t, vector w ) {
        return vector{ 2, (double[]){ w(1),
                                f( t,w ) } };
    }
    // y"(t) = 2y'(t) - y(t) + sin(t)
    double f( double t, vector w ) {
        return 2*w(1) - w(0) + sin(t);
    }
```


$2^{\text {nd }}-$ order initial-value problems

- Consider the following:

$$
\begin{aligned}
y^{(2)}(t)+2 y^{(1)}(t)+y(t) & =\sin (t) \\
y(0) & =1 \\
y^{(1)}(0) & =-2
\end{aligned}
$$

- In the last topic, we saw how we can write this with vectors

$$
\text { vector } F(\text { double } t \text {, vector } w \text {) \{ }
$$

return vector\{ 2 , (double[])\{ w(1),

$$
-2 * w(1)-w(0)+\sin (t)\}\} ;
$$

\}

7

Approximating solutions to higher-order initial-value problems

$2^{\text {nd }}-$ order initial-value problems

- The solution and our approximation is shown here:

$$
\begin{aligned}
y^{(2)}(t)+2 y^{(1)}(t)+y(t) & =\sin (t) \quad y(t)=\frac{3}{2} e^{-t}-\frac{1}{2} t e^{-t}-\frac{1}{2} \cos (t) \\
y\left(t_{0}\right) & =1 \\
y^{(1)}\left(t_{0}\right) & =-2
\end{aligned}
$$

$2^{\text {nd }}$-order initial-value problems

- The output of the Dormand-Prince method is:

0	< 1	-2>
0.01	< 0.9801495012466744	-1.970149501662508
0.03	< 0.9413366004450955	-1.911336633992595
0.07	< 0.8671814460390597	-1.797182432449922
0.15	< 0.7321233276597681	-1.582143788605167
0.31	< 0.5103193853011617	-1.200680330337188
0.63	< 0.2271084350598108	-0.6028457398035203
1.27	< 0.09484159082902341	0.09414765884974807>
2.27	< 0.360724134043294	0.29190279275873
3.22870270906355	< 0.4949570390741321	-0.06046514781695389>
4.180454048644937	< 0.2454653632568291	-0.4306789648656997 >
5.180454048644937	<-0.2319093306500261	-0.4427291816128475 >
6.180454048644937	<-0.5018483904660588	-0.04756916700176944>
7.167318861458502	<-0.3196352998086384	0.3892455074943849 >
8.167318861458501	< 0.1533886469424242	0.4763189756994295
9.167318861458501	< 0.4843038344873439	0.1262539232541798 >
10.16224322948684	< 0.3711291770716665	-0.3375822706119238

$2^{\text {nd }}-$ order initial-value problems

- The solution and our approximation is shown here:

$$
\left.\left.\begin{array}{rlrl}
y^{(2)}(t)+2 y^{(1)}(t)+y(t) & =\sin (t) & y(t) & =\frac{3}{2} e^{-t}-\frac{1}{2} t e^{-t}-\frac{1}{2} \cos (t) \\
y\left(t_{0}\right) & =1 & & y^{(1)}(t)
\end{array}\right)=-\frac{3}{2} e^{-t}-\frac{1}{2} e^{-t}+\frac{1}{2} t e^{-t}+\frac{1}{2} \sin (t)\right)
$$

Higher-order initial-value problems

- The process is the same for a higher-order IVP:
$12.5 y^{(5)}(t)+17.5 y^{(4)}(t)+132.625 y^{(3)}(t)+128.95 y^{(2)}(t)+136.25 y^{(1)}(t)+91.304 y(t)=\cos (t)$

$$
y(0)=1.0
$$

- This is the function:

$$
y^{(1)}(0)=-0.8
$$

```
vector F( double t, vector w ) { return vector\{ 5, (double[])\{
\[
w(1), w(2), w(3), w(4),
\]
\[
\left(\cos (\mathrm{t})-17.5{ }^{*} \mathrm{w}(4)-132.625 * w(3)\right.
\]
\[
-128.95 * w(2)-136.25 * w(1)
\]
\[
\text { - } 91.304 * w(0)) / 12.5
\]
\[
\text { \} \}; }
\]
\[
\}
\]
```

$$
y^{(2)}(0)=0.7
$$

$$
y^{(3)}(0)=0.6
$$

$$
y^{(4)}(0)=-0.5
$$

11

Approximating solutions to higher-order initial-value problems

Higher-order initial-value problems

- This piece of code would print the appropriate output

```
int main() {
    auto result{ dp45(
        F. std::make_pair( 0.0, 10.0 ),
        |vector{ 5, (double[]){1.0, -0.8, 0.7, 0.6, -0.5 } },
        ) };
        std::cout << "n = " << std::get<0>( result )<< std::endl;
        for ( unsigned int k{0}; k <= std::get<0>( result ); ++k ) {
        std::cout << std::get<1>( result )[k]<< ", "
        << std::get<2>( result )[k]<< std::endl;
        }
        return 0;
```

\}

12

Higher-order initial-value problems

- This is the solution to this $5^{\text {th }}$-order IVP and our approximations

13

References

[1] https://en.wikipedia.org/wiki/Initial_value_problem

Colophon

These slides were prepared using the Cambria typeface. Mathematical equations use Times New Roman, and source code is presented using Consolas. Mathematical equations are prepared in MathType by Design Science, Inc. Examples may be formulated and checked using Maple by Maplesoft, Inc.

The photographs of flowers and a monarch butter appearing on the title slide and accenting the top of each other slide were taken at the Royal Botanical Gardens in October of 2017 by Douglas Wilhelm Harder. Please see
https://www.rbg.ca/
for more information.

17

Approximating solutions to higher-order nitial value problems

Disclaimer

These slides are provided for the ECE 204 Numerical methods course taught at the University of Waterloo. The material in it reflects the author's best judgment in light of the information available to them at the time of preparation. Any reliance on these course slides by any party for any other purpose are the responsibility of such parties. The authors accept no responsibility for damages, if any, suffered by any party as a result of decisions made or actions based on these course slides for any other purpose than that for which it was intended.

